Vision-based Navigation Solution for Soft and Precise Landing on Mars

Marc Chapuy, Grégory Jonniaux, Florent Hennart, Erwan Kervendal

19/06/2012 – InterPlanetary Probe Workshop 9

REF: GNC T.PS.764404.ASTR

Detailed agenda

- Goals and stakes
- Navigation system
 - Relative navigation for landing
 - Absolute navigation for approach
 - Absolute navigation for landing
 - Sensor suite
- Performance assessment
 - Navigation error budget
 - Detailed results
- Conclusion and future work

Goals and Stakes (1/2)

- Mars precision landing requirements have become more stringent
 - Mission planning of MSR
 - MPL 10km, close to MAV and sample cache
 - Scientific interests constraints
 - MSL 20x7 km ellipse, 150x20 km for MER
 - Guided entry implemented
 - Main remaining error contributors:
 - Precision of injection (ΔDOR, Doppler, range)
 - Error accumulated during re-entry (inertial)

Goals and Stakes (2/2)

- Vision based navigation
 - Experience of Astrium in relative vision-based navigation systems
 - Inherited from ESA NPAL study
 - Applied to MPL
 - Autonomous solution, guarantees soft landing, but not precision (no direct observation of position in planetary frame)
 - Investigation of vision-based navigation for precision
 - Improvement of system for main error contributors
 - Absolute navigation in approach
 - Absolute navigation during landing
 - Navigation error budget presented here

Navigation system (1/6)

- Relative navigation for landing
 - Based on NPAL (ESA study) algorithms: feature point extraction and tracking
 - Algorithms validated on PLGTF experiment images (NPAL camera and IMU flown on UAV, with UFS algorithms: NPAL evolution)

- Provides:
 - velocity and attitude estimates on all axes → Reduced position drift
 - an estimate of altitude based on feature point depth
 - but no lateral position measurement wrt landing area

Navigation system (2/6)

Absolute navigation for Approach principle

- LoS towards a priori known patches on the visible Mars globe
 - Importance of image processing
 - LoS converted to inertial frame with Attitude Determination System
- Different LoS hybridized in dynamic filter (Kalman)
- Derivation of position in inertial frame or wrt Planet

Absolute navigation image processing for Approach

- Patch matching techniques used for Astrium Earth observation satellites
- Suitable for embedded coding:
 - Algorithms core similar to already embedded artificial vision techniques
 - Image database textures require limited disk space
- A variety of fast processing are applied (DEM correction, Mars ellipsoid, atmosphere transmission, etc...)

Navigation system (3/6)

- Absolute navigation simulations
 - Use of MSL approach trajectory
 - An in-house high fidelity planetary image simulator has been developed:
 Surrender
 - Full Mars with a 100m resolution referenced texture
 - A variety of effects are simulated: atmosphere layers, reflectance models, dust clouds, frost, elevation, illumination conditions (including shadows casting), etc.
 - Rendered textures are from real missions (MGS, MRO, Viking) extracted from NASA PDS. Different textures for approach images and on-board patches

Navigation system (4/6)

- Absolute navigation for Landing principle and image processing
 - Identification of descent images in a reference map the size of initial uncertainties
 - Algorithm designed for Mars specificities :
 - Initial position uncertainty of the order of the camera FoV projected on ground
 - Large uncertainty on altitude and scale at initialization
 - Image processing robust to large scale uncertainties
 - Altitude can be estimated by the image processing technique
 - Relative navigation outputs (attitude, altitude) allow enhancement of the absolute navigation algorithms

Navigation system (5/6)

- Absolute navigation for Landing simulations
 - MPL trajectory above Gale Crater
 - Use of Pangu interfaced with Astrium tools for real terrain management.
 - Real DEM and texture are used
 - Texture projected on DEM using Pangu
 - A variety of terrains can be imported and simulated
 - Advantages :
 - Database map and descent images are based on different sources (ex: S/C descent images from MRO, Database map from Viking)
 - Numerous environment-related parameters can be tuned for a fair robustness assessment

Navigation system (6/6)

- Sensor suites
 - 2 Jena Astro APS STR, 1 LN 200 IMU
 - NAC (for approach):
 - 3 degree FoV, 1024x1024 detector
 - Inspired from Dawn framing camera
 - WAC (for landing): NPAL camera
 - Radiofrequency tracking (1 update/day):
 - 21.6 km (3σ) assessed for MSL with Doppler only
 - Better than 2km (3σ): MSL baseline with ΔDOR

Performance assessment (1/2)

Navigation error budget (3σ, worst axis), using all functions

Event	Present system	MPL results	Comments
Carrier separation	900 m	2100 m	MPL: MER+50%, B-plane, ΔDOR
Front shield jettison	3600 m	4500 m	Simple propagation with IMU, to be refined
Thruster activation	75 m	5200 m	No absolute navigation used for MPL
Touch down	58 m	5200 m	Abs. nav. stopped at 400m ASL, relative still operating

Detailed results for Approach (last day)

Full performance is reached in the last hours

Performance assessment (2/2)

- Detailed for Landing
 - Absolute navigation (taking into account the enhanced accuracy at entry)

- Relative navigation
 - Altitude error better than 4m (dropship concept robust to this error)
 - Velocity error: 0.3 m/s vertical, 0.1 m/s horizontal (3σ) at touchdown

Conclusion and future work

- Vision-based navigation: a relevant solution for Mars landing
 - Improvement of navigation error before EIP
 - Pin-point landing possible with very good accuracy at touchdown
 - Soft landing requirements met
 - Autonomous, and light weight solution
 - MREP camera TRP to assess robustness
- Completion and refinement of results
 - Results are still preliminary (with representative images)
 - Full performance analyses (Monte Carlo) beyond covariance
 - Different scenarios, cases, sensitivity analysis
- Full GNC integration and closed loop, online IP
 - Assessment of total delivery error

Thank you for your attention!

Any questions?

